The protein p53 is crucial in cancer prevention. The corresponding gene TP53 encodes proteins that prevent mutations of the genome and is the most frequently mutated gene in human cancers. Gaining insights into how p53 inactivation happens is crucial for understanding tumorigenesis in general and glioblastoma in particular.
Nakada and Wong and colleagues first checked whether any nuclear pore complex proteins were amplified (“overexpressed”) in glioblastoma. They found that one such protein, called NUP107, showed overexpression. Further investigations revealed that NUP107 is a potential oncoprotein in glioblastoma; its overexpression degrades the function of the cancer-suppressing p53 protein. They also found that MDM2, another protein, is overexpressed simultaneously with NUP107. MDM2 is also known to mediate p53 protein degradation.
Further studies will be necessary to uncover the full molecular pathways at play, but the scientists speculate that the increased amount of NUP107 proteins in the NPCs of glioblastoma cells results in NPC structures that regulate the transport of molecules from the nucleus to the cytoplasm in a way that promotes p53 degradation. This scenario is referred to as nuclear transport surveillance. Experiments in which NUP107 proteins were depleted re-activated p53, consistent with NUP107 providing structural stability of glioblastoma NPCs.
The findings of Nakada and Wong and colleagues confirm that alterations of NPCs contribute to the pathogenesis of glioblastoma. The researchers state, “Together, our findings establish roles of NPCs in transport surveillance and provide insights into p53 inactivation in glioblastoma.”
More information:
Dini Kurnia Ikliptikawati et al, Nuclear transport surveillance of p53 by nuclear pores in glioblastoma, Cell Reports (2023). DOI: 10.1016/j.celrep.2023.112882
Citation:
Brain cancer linked to nuclear pore alterations (2023, September 15)
retrieved 15 September 2023
from https://medicalxpress.com/news/2023-09-brain-cancer-linked-nuclear-pore.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.