Study reveals how neighboring synapses coordinate their response to plasticity signals

Study reveals how neighboring synapses coordinate their response to plasticity signals
Spine plasticity is dependent on how many neighboring spines potentiate, the size and the spatial distribution of that “social network” determines the amount of plasticity each spine can have. Credit: Thomas Chater

Researchers from Bonn and Japan have clarified how neighboring synapses coordinate their response to plasticity signals: Nerve cells in the brain receive thousands of synaptic signals via their “antenna,” the so-called dendritic branch. Permanent changes in synaptic strength correlate with changes in the size of dendritic spines. However, it was previously unclear how the neurons implement these changes in strength across several synapses that are close to each other and active at the same time.

The researchers—from the University Hospital Bonn (UKB), the University of Bonn, the Okinawa Institute of Science and Technology Graduate University (OIST) and the RIKEN Center for Brain Science (CBS)—assume that the competition between for molecular resources and the spatial distance between simultaneously stimulated spines affect their resulting dynamics. The results of the study have now been published in the journal Nature Communications.

Neurons are the computing units of the brain. They receive thousands of synaptic signals via their dendrites, with individual synapses undergoing activity-dependent plasticity. This is the mechanism underlying our memory and thinking and reflects long-lasting changes in synaptic strength.

When learning new memories, particularly active synapses strengthen their connections in a process known as “long-term potentiation” (LTP). However, how neurons allocate resources to translate synaptic strength changes through space and time among neighboring synapses has been unclear. Until now, it was assumed that each synapse decides independently of the others how it changes

The study suggests a new perspective on how neighboring synapses coordinate their response to plasticity signals. Researchers from Bonn and Japan have found that the sharing of proteins and calcium makes synaptic plasticity a in which the behavior of one synapse influences how the others can respond.

“When several synapses want to potentiate at the same time and are close to each other, they compete with each other so that each synapse potentiates less than if it were alone. On the other hand, the simultaneous potentiation of a few synapses can facilitate the plasticity of other synapses through the overflow of activated resources,” says Prof. Tatjana Tchumatchenko, from the Institute for Experimental Epileptology and Cognition Research at the UKB and member of the Transdisciplinary Research Area (TRA) “Modeling” at the University of Bonn. She led the study together with Prof. Yukiko Goda from the OIST in Japan.

Read More

Zaļā Josta - Reklāma